A Novel Tensor Perceptual Color Framework based Facial Expression Recognition

نویسنده

  • P Amith Kumar
چکیده

The Robustness of Facial Expression Recognition (FER) is based on information contained in color facial images. The Tensor Perceptual Color Framework (TPCF) enables multilinear image analysis in different color spaces. This demonstrates that the color components provide additional information for robust FER. By using this framework color components RGB, YCbCr, CIELab or CIELuv space of color images are unfolded to 2-D tensors based on multilinear algebra and tensor concepts. The features of this unfolded image are extracted by using log-Gabor filter. The optimum features are selected based on mutual information quotient method in feature selection process. These features are classified using a multiclass linear discriminant analysis classifier. Experimental results demonstrate that color information has significant potential to improve emotion recognition performance due to the complementary characteristics of image textures. Keywords-facial expression recognition (FER), Log-Gabor filters, multilinear image analysis, Tensor Perceptual color Framework (TPCF). __________________________________________________*****_________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Expression Recognition Using SVM Classification in Perceptual Color Space

Facial expression analysis is an important area of Human Robot Interaction (HRI) because facial expressions represent human emotions. Here, a new facial expression recognition system is introduced which uses tensor concept. Here perceptual color space is used instead of RGB color space since it cannot work well with illumination and pose variations. Also for classification purpose SVM classifie...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Recognition of Face Expression using Color Space

Face expression recognition can be stated as „identifying the expression of an individual from images of the face‟. Most of the existing systems of facial expression recognition focus on gray scale image features. This paper describes the novel approaches for effectively recognizing the facial expressions. In facial expression recognition (FER) framework, initially the face region of the image ...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014